Дисрегуляція моноамінергічних систем як об’єкт цільової терапії посттравматичного стресового розладу. Частина 1: серотонінергічна дисфункція при посттравматичному стресовому розладі та перспективні засоби її фармакологічної корекції
pdf

Ключові слова

посттравматичний стресовий розлад
серотонінергічна дисфункція
моноамінергічні системи
цільова терапія
фармакологічна корекція

Анотація

Посттравматичний стресовий розлад (ПТСР) описується як комплекс соматичних, когнітивних, афективних і поведінкових наслідків психологічної травми, що призводить до соціальної, професійної та міжособистісної дисфункції. З точки зору сучасних знань, ПТСР є наслідком дисфункції взаємозалежних нейромедіаторних / нейромодуляторних систем, глибоке розуміння місця та ролі яких у патогенезі ПТСР створює основу для розробки нових стратегій лікування.

В огляді наведено результати інформаційно-аналітичного дослідження матеріалів інтернет-ресурсів (PubMed, MEDLINE, Web of Science, ClinicalTrials.gov, Drugbank) щодо серотонінергічної дисфункції при ПТСР і сучасних розробок у галузі її фармакологічної регуляції з позицій мішень-орієнтованої терапії.

https://doi.org/10.33250/19.04.326
pdf

Посилання

1. Shalev A., Liberzon I., Marmar C. Post-traumatic stress disorder. N. Engl. J. Med. 2017. V. 376 (25). P. 2459–2469. https://doi.org/10.1056/NEJMra1612499.
2. Bidirectional associations between COVID-19 and psychiatric disorder: retrospective cohort studies of 62 354 COVID-19 cases in the USA. M. Taquet, S. Luciano, J. R. Geddes, P. J. Harrison. Lancet Psychiatry. 2021. V. 8 (2). P. 130–140. https://doi.org/10.1016/S2215-0366(20)30462-4. Epub 2020 Nov 9.
3. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. D. F. Santomauro, A. M. M. Herrera, J. Shadid et al. Lancet. 2021. V. 398 (10312). P. 1700–1712. https://doi.org/10.1016/S0140-6736(21)02143-7. Epub 2021 Oct 8.
4. The role of pharmacogenetics in the treatment of anxiety disorders and the future potential for targeted therapeutics. M. Scherf-Clavel, H. Weber, J. Deckert, A. Erhardt-Lehmann. Expert Opin. Drug Metab. Toxicol. 2021. V. 17 (11). P. 1249–1260. https://doi.org/10.1080/17425255.2021.1991912. Epub 2021
Oct 15.
5. Fanselow M. S., Pennington Z. T. The danger of LeDoux and Pine’s two-system framework for fear. Am. J. Psychiatry. 2017. V. 174 (11). V. 1120–1121. https://doi.org/10.1176/appi.ajp.2017.17070818.
6. LeDoux J. E., Pine D. S. Using neuroscience to help understand fear and anxiety: a two-system framework. Am. J. Psychiatry. 2016. V. 173 (11). P. 1083–1093. https://doi.org/10.1176/appi.ajp.2016.16030353. Epub 2016 Sep 9.
7. Novel pharmacological targets of post-traumatic stress disorders. D. Marazziti, C. Carmassi, G. Cappellato et al. Life (Basel). 2023. V. 13 (8). P. 1731. Published online 2023 Aug 11. https://doi.org/10.3390/life13081731.
8. Impact of oxytocin on the neural correlates of fearful face processing in PTSD related to childhood trauma. J. C. Flanagan, L. M. Sippel, M. M. Moran-Santa Maria et al. Eur. J. Psychotraumatol. 2019. V. 10 (1). https://doi.org/https://doi.org/10.1080/20008198.2019.1606626.
9. PTSD: from neurobiology to pharmacological treatments. B. Kelmendi, T. G. Adams, S. Yarnell et al. Eur. J. Psychotraumatol. 2016. V. 7. P. 31858. https://doi.org/10.3402/ejpt.v7.31858.
10. Trauma reactivation under propranolol among traumatized Syrian refugee children: preliminary evidence regarding efficacy. S. Thierrée, S. Richa, A. Brunet et al. Eur. J. Psychotraumatol. 2020. V. 11 (1). P. 1733248. https://doi.org/10.1080/20008198.2020.1733248.
11. To predict, prevent, and manage post-traumatic stress disorder (PTSD): a review of pathophysiology, treatment, and biomarkers. G. I. Al Jowf, Z. T. Ahmed, R. A. Reijnders et al. Int. J. Mol. Sci. 2023. V. 24 (6). P. 5238. https://doi.org/10.3390/ijms24065238.
12. Heim C., Nemeroff C. B. Neurobiological pathways involved in fear, stress, and PTSD. In: Neurobiology of PTSD: from brain to mind (I. Liberzon & K. J. Ressler Eds.). Oxford University Press, 2016. P. 220–238.
13. Biological studies of post-traumatic stress disorder. R. K. Pitman, A. M. Rasmusson , K. C. Koenen et al. Nat. Rev. Neurosci. 2012. V. 13 (11). P. 769–787. https://doi.org/10.1038/nrn3339. Epub 2012 Oct 10.
14. Young S. N. How to increase serotonin in the human brain without drugs. J. Psychiatry Neurosci. 2007. V. 32 (6). V. 394–399.
15. Neumeister A. Noradrenergic and serotonergic mechanisms in the neurobiology of posttraumatic stress disorder and resilience. Brain Res. 2009. V. 1293. P. 13–23. https://doi.org/10.1016/j.brainres.2009.03.044.
16. Recent progress in understanding the pathophysiology of post-traumatic stress disorder: implications for targeted pharmacological treatment. C. R. Bailey, E. Cordell, S. M. Sobin, A. Neumeister. CNS Drugs. 2013. V. 27 (3). P. 221–232. https://doi.org/10.1007/s40263-013-0051-4.
17. Increased 5-HT2C receptor editing predisposes to PTSD-like behaviors and alters BDNF and cytokines signaling. M. Règue, C. Poilbout, V. Martin et al. Transl. Psychiatry. 2019. V. 9 (1). P. 100. https://doi.org/10.1038/s41398-019-0431-8.
18. Solati J., Salari A. A., Bakhtiari A. 5HT(1A) and 5HT(1B) receptors of medial prefrontal cortex modulate anxiogenic-like behaviors in rats. Neurosci. Lett. 2011. V. 504 (3). P. 325–329. https://doi.org/10.1016/j.neulet.2011.09.058. Epub 2011 Oct 1.
19. Serotonin receptors 2A and 1A modulate anxiety-like behavior in post-traumatic stress disordered mice. M. Xiang, Y. Jiang, Z. Hu et al. Am. J. Transl. Res. 2019. V. 11 (4). P. 2288–2303. eCollection 2019.
20. Higher in vivo serotonin-1a binding in posttraumatic stress disorder: a PET study with [11C]WAY-100635. G. M. Sullivan, R. T. Ogden, Y. Y. Huang et al. Depress Anxiety. 2013. V. 30 (3). P. 197–206. https://doi.org/10.1002/da.22019. Epub 2013 Feb 13.
21. Pharmacological modulation of 5-HT(2C) receptor activity produces bidirectional changes in locomotor activity, responding for a conditioned reinforcer, and mesolimbic DA release in C57BL/6 mice. C. J. Browne, X. Ji, G. A. Higgins et al. Neuropsychopharmacology. 2017. V. 42 (11). P. 2178–2187.
https://doi.org/10.1038/npp.2017.124. Epub 2017 Jun 13.
22. Behavioral characteristics of 5-HT(2C) receptor knockout mice: locomotor activity, anxiety-, and fear memory-related behaviors. M. Nebuka, Y. Ohmura, S. Izawa et al. Behav. Brain Res. 2020. V. 379. P. 112394. https://doi.org/10.1016/j.bbr.2019.112394. Epub 2019 Nov 28.
23. Krystal J. H., Neumeister A. Noradrenergic and serotonergic mechanisms in the neurobiology of posttraumatic stress disorder and resilience. Brain Res. 2009. V. 1293. P. 13–23. https://doi.org/10.1016/j.brainres.2009.03.044. Epub 2009 Mar 28.
24. Cloning, characterization, and chromosomal localization of a human 5-HT6 serotonin receptor. R. Kohen, M. A. Metcalf, N. Khan et al. J. Neurochem. 1996. V. 66 (1). P. 47–56. https://doi.org/10.1046/j.1471-4159.1996.66010047.x.
25. Functional human 5-HT6 receptor assay for high throughput screening of chemical ligands and binding proteins. H-Ji. Kim, H-M. Yun, T. Kim et al. Comb. Chem. High Throughput Screen. 2008. V. 11 (4). P. 316–324. https://doi.org/10.2174/138620708784246059.
26. Characterization of the 5-HT6 receptor coupled to Ca2+ signaling using an enabling chimeric G-protein. J. Y. Zhang, S. Nawoschik, D. Kowal et al. Eur. J. Pharmacol. 2003. V. 472. P. 33–38. https://doi.org/10.1016/s0014-2999(03)01855-7.
27. Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine-6 and 5-hydro-xytryptamine-7 receptors. B. L. Roth, S. C. Craigo, M. S. Choudhary et al. J. Pharmacol. Exp. Ther.1994. V. 268 (3). P. 1403–1410.
28. 5-chloro-N-(4-methoxy-3-piperazin-1-yl-phenyl)-3-methyl-2-benzothiophenesulfon-amide (SB-271046): a potent, selective, and orally bioavailable 5-HT6 receptor antagonist. S. M. Bromidge, A. M. Brown, S. E. Clarke et al. J. Med. Chem. 1999. V. 42. V. 202–205. https://doi.org/10.1021/
jm980532e.
29. Characterization of [125I]-SB-258585 binding to human recombinant and native 5-HT(6) receptors in rat, pig and human brain tissue. W. D. Hirst, J. A. L. Minton, S. M. Bromidge et al. Br. J. Pharmacol. 2000. V. 130 (7). P. 1597–1605. https://doi.org/10.1038/sj.bjp.0703458.
30. Characterization of Ro 04-6790 and Ro 63-0563: potent and selective antagonists at human and rat 5-HT6 receptors. A. J. Sleight, F. G. Boess, M. Bös et al. Br. J. Pharmacol. 1998. V. 124 (3). P. 556–562. https://doi.org/10.1038/sj.bjp.0701851.
31. Serotonin receptors of type 6 (5-HT6): what can we expect from them? D. Marazziti, S. Baroni, M. C. Dell'Osso et al. Curr. Med. Chem. 2011. V. 18 (18). P. 2783–2790. https://doi.org/10.2174/092986711796011283.
32. Codony X., Vela J. M., Ramírez M. J. 5-HT(6) receptor and cognition. Curr. Opin. Pharmacol. 2011. V. 11 (1). P. 94–100. https://doi.org/10.1016/j.coph.2011.01.004.
33. AVN-492, a novel highly selective 5-HT6R antagonist: preclinical evaluation. A. V. Ivachtchenko, I. Okun, V. Aladinskiy et al. J. Alzheimers. 2017. V. 58 (4). P. 1043–1063. https://doi.org/10.3233/JAD-161262.
34. 2-Alkyl-3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indoles as novel 5-HT6 receptor agonists. C. Mattsson, C. Sonesson, A. Sandahl et al. Bioorg. Med. Chem. Lett. 2005. V. 15 (19). P. 4230–4234. https://doi.org/10.1016/j.bmcl.2005.06.067.
35. Discovery of 5-arylsulfonamido-3-(pyrrolidin-2-ylmethyl)-1H-indole derivatives as potent, selective 5-HT6 receptor agonists and antagonists. D. C. Cole, W. J. Lennox, S. Lombardi et al. J. Med. Chem. 2005. V. 48 (2). P. 353–356. https://doi.org/10.1021/jm049243i.
36. Chronic 5-HT6 receptor modulation by E-6837 induces hypophagia and sustained weight loss in diet-induced obese rats. A. Fisas, X. Codony, G. Romero et al. Br. J. Pharmacol. 2006. V. 148 (7). P. 973–983. https://doi.org/10.1038/sj.bjp.0706807.
37. Discovery of N1-(6-chloroimidazo[2,1-b][1,3]thiazole-5-sulfonyl)tryptamine as a potent, selective, and orally active 5-HT(6) receptor agonist. D. C. Cole, J. R. Stock, W. J. Lennox et al. J. Med. Chem. 2007. V. 50 (23). P. 5535–5538. https://doi.org/10.1021/jm070521y.
38. Neuropharmacological profile of novel and selective 5-HT6 receptor agonists: WAY-181187 and WAY-208466. L. E. Schechter, Q. Lin, D. L. Smith et al. Neuropsychopharmacology. 2008. V. 33 (6). P. 1323–1335. https://doi.org/10.1038/sj.npp.1301503.
39. Activation of the 5-HT6 receptor attenuates long-term potentiation and facilitates GABAergic neurotransmission in rat hippocampus. P. J. West, V. R. Marcy, M. J. Marino, H. Schaffhauser. Neuroscience. 2009. V. 164 (2). P. 692–701. https://doi.org/10.1016/j.neuroscience.2009.07.061. Epub 2009 Aug 4.
40. Carr G. V., Schechter L. E., Lucki I . Antidepressant and anxiolytic effects of selective 5-HT6 receptor agonists in rats. Psychopharmacology (Berl). 2011. V. 213 (2–3). P. 499–507. https://doi.org/10.1007/s00213-010-1798-7. Epub 2010 Mar 9.
41. Loiseau F., Dekeyne A., Millan J. Pro-cognitive effects of 5-HT6 receptor antagonists in the social recognition procedure in rats: implication of the frontal cortex. Psychopharmacology (Berl). 2008. V. 196 (1). P. 93–104. https://doi.org/10.1007/s00213-007-0934-5. Epub 2007 Oct 6.
42. ST1936 stimulates cAMP, Ca2+, ERK1/2 and Fyn kinase through a full activation of cloned human 5-HT6 receptors. T. Riccioni, F. Bordi, P. Minetti et al. Eur. J. Pharmacol. 2011. V. 661 (1–3). P. 8–14. https://doi.org/10.1016/j.ejphar.2011.04.028. Epub 2011 Apr 28.
43. Vanhoenacker P., Haegeman G., Leysen J. E. 5-HT7 receptors: current knowledge and future prospects. Trends Pharmacol. Sci. 2000. V. 21 (2). V. 70–77. https://doi.org/10.1016/s0165-6147(99)01432-7.
44. Four 5-hydroxytryptamine7 (5-HT7) receptor isoforms in human and rat produced by alternative splicing: species differences due to altered intron-exon organization. D. E. Heidmann, M. A. Metcalf, R. Kohen, M. W. Hamblin. Journal of Neurochemistry. 1997. V. 68 (4). P. 1372–1381. https://doi.org/10.1046/j.1471-4159.1997.68041372.x.
45. Molecular cloning, characterization, and localization of a high-affinity serotonin receptor (5-HT7) activating cAMP formation. M. Ruat, E. Traiffort, R. Leurs et al. Proceedings of the National Academy of Sciences of the United States of America. 1993. V. 90 (18). P. 8547–8551. Bibcode:1993PNAS..90.8547R. https://doi.org/10.1073/pnas.90.18.8547.
46. Cloning of a novel human serotonin receptor (5-HT7) positively linked to adenylate cyclase. J. A. Bard, J. Zgombick, N. Adham et al. The Journal of Biological Chemistry. 1999. V. 268 (31). P. 23422–23426. https://doi.org/10.1016/S0021-9258(19)49479-9.
47. Hedlund P. B., Sutcliffe J. G. Functional, molecular and pharmacological advances in 5-HT7 receptor research. Trends in Pharmacological Sciences. 2004. V. 25 (9). P. 481–486. https://doi.org/10.1016/j.tips.2004.07.002. PMID 15559250.
48. 5-HT7 receptor antagonists as a new class of antidepressants. O. Mnie-Filali, L. Lambás-Señas, L. Zimmer, N. Haddjeri. Drug News & Perspectives. 2007. V. 20 (10). P. 613–618. https://doi.org/10.1358/dnp.2007.20.10.1181354.
49. Interplay between serotonin 5-HT1A and 5-HT7 receptors in depressive disorders. V. S. Naumenko, N. K. Popova, E. Lacivita et al. CNS Neuroscience & Therapeutics. 2014. V. 20 (7). P. 582–590. https://doi.org/10.1111/cns.12247.
50. National Institute for Health and Care Excellence. Post-traumatic stress disorder (NICE Quality Standard NG116) 2018 [Internet] c. [cited 2019 Sep 9]. URL: https://www.nice.org.uk.guidance/ng116/evidenc.
51. Australian guidelines for the prevention and treatment of acute stress disorder, posttraumatic stress disorder, and complex posttraumatic stress disorder. Phoenix, Australia Centre for Posttraumatic Mental Health. National Health and Medical Research Council; Canberra, Australia, 2020.
52. Veterans Health Administration, Department of Defense. VA/DoD clinical practice guideline for the management of post-traumatic stress. Washington : Veterans Health Administration, Department of Defense, 2017.
53. Clinical practice guideline for the treatment of Posttraumatic Stress Disorder (PTSD) in adults. American Psychological Association, Guideline Development Panel for the Treatment of PTSD in Adults. 2017. URL: https://www.apa.org/ptsd-guideline.
54. Canadian clinical practice guidelines for the management of anxiety, posttraumatic stress and obsessive-compulsive disorders. BMC Psychiatry. 2014. V. 14 (Suppl 1). P. S1. https://doi.org/10.1186/1471-244X-14-S1-S1.
55. Pimavanserin for patients with Parkinson’s disease psychosis: a randomised, placebo-controlled phase 3 trial. J. Cummings, S. Isaacson, R. Mills et al. Lancet. 2014. V. 383 (9916). P. 533–540.
56. Friedman J. H. Pimavanserin for the treatment of Parkinson's disease psychosis. Expert Opinion on Pharmacotherapy. 2013. V. 14 (14). P. 1969–1975. https://doi.org/10.1517/14656566.2013.819345.
57. Pharmacological and behavioral profile of N-(4-fluorophenylmethyl)-N-(1-methylpiperidin-4-yl)-N'-(4-(2-methylpropyloxy)phenylmethyl) carbamide (2R,3R)-dihydroxybutanedioate (2:1) (ACP-103), a novel 5-hydroxytryptamine(2A) receptor inverse agonist. K. E. Vanover, D. M. Weiner, M. Makhay et al. J. Pharmacol. Exp. Ther. 2006. V. 317 (2). P. 910–918. https://doi.org/10.1124/jpet.105.097006.
58. New antipsychotic drugs for the treatment of agitation and psychosis in Alzheimer's disease: focus on brexpiprazole and pimavanserin. F. Caraci, M. Santagati, G. Caruso et al. F1000research. 2020. V. 9 (Faculty Rev). P. 686. https://doi.org/10.12688/f1000research.22662.1.
59. Pimavanserin reverses multiple measures of anxiety in a rodent model of post-traumatic stress disorder. D. H. Malin, P-H. Tsai, J. R. Campbell et al. Eur. J. Pharmacol. 2023. V. 939. P. 175437. https://doi.org/10.1016/j.ejphar.2022.175437. Epub 2022 Dec 9.
60. Sleep disturbances in the Vietnam generation: findings from a nationally representative sample of male Vietnam veterans. T. C. Neylan, C. R. Marmar, T. J. Metzler et al. Am. J. Psychiatry. 1998. V. 155 (7). P. 929–33. https://doi.org/10.1176/ajp.155.7.929.
61. Larsen S. E., Fleming C. J. E., Resick P. A. Residual symptoms following empirically supported treatment for PTSD. Psychol. Trauma. 2019. V. 11 (2). P. 207–215. https://doi.org/10.1037/tra0000384. Epub 2018 Jul 2.
62. It is time to address the crisis in the pharmacotherapy of posttraumatic stress disorder: a consensus statement of the PTSD Psychopharmacology Working Group. J. H. Krystal, L. L. Davis, T. C. Neylan et al. Biol. Psychiatry. 2017.V. 82 (7). P.e51–e59. https://doi.org/10.1016/j.biopsych.2017.03.007. Epub 2017 Mar 14.
63. Pimavanserin tartrate, a 5-HT(2A) receptor inverse agonist, increases slow wave sleep as measured by polysomnography in healthy adult volunteers. S. Ancoli-Israel, K. E. Vanover, D. M. Weiner et al. Sleep Med. 2011. V. 12 (2). P. 134–141. https://doi.org/10.1016/j.sleep.2010.10.004. Epub 2011 Jan 21.
64. Landolt H. P., Wehrle R. Antagonism of serotonergic 5-HT2A/2C receptors: mutual improvement of sleep, cognition and mood? Eur. J. Neurosci. 2009. V. 29 (9). P. 1795–809. https://doi.org/10.1111/j.1460-9568.2009.06718.x. Epub 2009 Apr 28.
65. Nighttime sleep and daytime sleepiness improved with pimavanserin during treatment of Parkinson’s disease psychosis. N. Patel, P. LeWitt, A. B. Neikrug et al. Clin. Neuropharmacol. 2018. V. 41 (6). P. 210–215. https://doi.org/10.1097/WNF.0000000000000307.
66. Effect of adjunctive pimavanserin on sleep/wakefulness in patients with major depressive disorder: secondary analysis from CLARITY. M. K. Jha, M. Fava, M. P. Freeman et al. J. Clin. Psychiatry. 2020. V. 82 (1). P. 20m13425. https://doi.org/10.4088/JCP.20m13425.
67. Pimavanserin 34 mg at bedtime for the treatment of insomnia in 6 veterans with posttraumatic stress disorder. M. B. Jones, R. Agrawal, A. Sharafkhaneh et al. J. Clin. Psychiatry. 2023.V. 84 (6). P. 23br14992. https://doi.org/10.4088/JCP.23br14992.
68. Електронний ресурс. URL: https://go.drugbank.com/drugs/DB00924.
69. Mestres J., Seifert S. A., Oprea T. I. Linking pharmacology to clinical reports: cyclobenzaprine and its possible association with serotonin syndrome. Clin. Pharmacol. Ther. 2011. V. 90 (5). P. 662–5. https://doi.org/10.1038/clpt.2011.177.
70. A universal pharmacological-based list of drugs with anticholinergic activity. M. Lavrador, A. C. Cabral, M. T. Veríssimo et al. Pharmaceutics. 2023. V. 15 (1). P. 230. https://doi.org/10.3390/pharmaceutics15010230.
71. The skeletal muscle relaxer cyclobenzaprine is a potent non-competitive antagonist of histamine H1 receptors. K. Singh, I. S. Senatorov, A. Cheshmehkani et al. J. Pharmacol. Exp. Ther. 2022. V. 380 (3). P. 202–209. https://doi.org/10.1124/jpet.121.000998.
72. Network-based drug repositioning: a novel strategy for discovering potential antidepressants and their mode of action. T. T. Zhang, R. Xue, X. Wang et al. Eur. Neuropsychopharmacol. 2018. V. 28 (10). P. 1137–1150. https://doi.org/10.1016/j.euroneuro.2018.07.096.
73. A phase 3, randomized, placebo-controlled, trial to evaluate the efficacy and safety of bedtime sublingual cyclobenzaprine (TNX-102 SL) in military-related posttraumatic stress disorder. M. E. Parmenter, S. Ledermanth, F. W. Weathers et al. Psychiatry Res. 2024. V. 334. P. 115764. https://doi.org/10.1016/j.psychres.2024.115764. Epub 2024 Feb 1.
74. Randomized clinical trial of bedtime sublingual cyclobenzaprine (TNX-102 SL) in military-related PTSD and the role of sleep quality in treatment response. G. M. Sullivan, R. M. Gendreau, J. Gendreau et al. Psychiatry Res. 2021. V. 301. P. 113974. https://doi.org/10.1016/j.psychres.2021.113974. Epub 2021 Apr 30.
75. Електронний ресурс. URL: https://synapse.patsnap.com/article/tonix-pharma-presented-data-on-tnx-102-sl-for-stress-ptsd-and-wound-healing-at-2024-mhsrs/
76. Reviewing the potential of psychedelics for the treatment of PTSD. E. Krediet, T. Bostoen, J. Breeksema et al. Int. J. Neuropsychopharmacol. 2020. V. 23 (6). P. 385–400. https://doi.org/10.1093/ijnp/pyaa018.
77. Psychedelics and psychedelic-assisted psychotherapy. C. M. Reiff, E. E. Richman, Ch. B. Nemeroff et al. Am. J. Psychiatry. 2020. V. 177 (5). P. 391–410. https://doi.org/10.1176/appi.ajp.2019.19010035. Epub 2020 Feb 26.
78. Long-term follow-up outcomes of MDMA-assisted psychotherapy for treatment of PTSD: a longitudinal pooled analysis of six phase 2 trials. L. Jerome, A. A. Feduccia, J. B. Wang et al. Psychopharmacology (Berl). 2020. V. 37 (8). P. 2485–2497. https://doi.org/10.1007/s00213-020-05548-2. Epub 2020 Jun 4.
79. Pharmacological therapy for post-traumatic stress disorder: a systematic review and meta-analysis of monotherapy, augmentation and head-to-head approaches. M. D. Hoskins, J. Bridges, R. Sinnerton
et al. Eur. J. Psychotraumatol. 2021. V. 12 (1). P. 1802920. https://doi.org/10.1080/20008198.2020.1802920. eCollection 2021.
80. Aghajanian G. K., Bing O. H. Persistence of lysergic acid diethylamide in the plasma of human subjects. Clin. Pharmacol. Ther. 1964. V. 5. P. 611–614. https://doi.org/10.1002/cpt196455611.
81. Krebs-Thomson K., Paulus M. P., Geyer M. A. Effects of hallucinogens on locomotor and investigatory activity and patterns: influence of 5-HT2A and 5-HT2C receptors. Neuropsychopharmacology. 1998. V. 18 (5). P. 339–351. https://doi.org/10.1016/S0893-133X(97)00164-4.
82. Titeler M., Lyon R. A., Glennon R. A. Radioligand binding evidence implicates the brain 5-HT2 receptor as a site of action for LSD and phenylisopropylamine hallucinogens. Psychopharmacology. 1988. V. 94 (2). https://doi.org/10.1007/BF00176847. ISSN 0033-3158.
83. Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists. J. L. Moreno, T. Holloway, L. Albizu et al. Neuroscience Letters. 2011. V. 493 (3). P. 76–79. https://doi.org/10.1016/j.neulet.2011.01.046.
84. Backstrom J. Agonist-directed signaling of serotonin 5-HT2C receptors differences between serotonin and lysergic acid diethylamide (LSD). Neuropsychopharmacology. 1999. V. 21 (2). P. 77S–81S. https://doi.org/10.1016/S0893-133X(99)00005-6.
85. Marona-Lewicka, Thisted R., Nichols D. Distinct temporal phases in the behavioral pharmacology of LSD: dopamine D2 receptor-mediated effects in the rat and implications for psychosis.
Psychopharmacology. 2005. V. 180 (3). P. 427–435. https://doi.org/10.1007/s00213-005-2183-9. eISSN 1432-2072.
86. Електронний ресурс. URL: https://blossomanalysis.com/trials/better-life-pharma-td-0148a-phase-i/.
87. A non-hallucinogenic LSD analog with therapeutic potential for mood disorders. V. Lewis, E. M. Bonniwell, J. K. Lanham et al. Cell Rep. 2023. V. 42 (3). P. 112203. https://doi.org/10.1016/j.celrep.2023.112203. Epub 2023 Mar 6.
88. Psilocybin as a new approach to treat depression and anxiety in the context of life-threatening diseases – a systematic review and meta-analysis of clinical trials. A. S. Vargas, Â. Luís, M. Barroso et al. Biomedicines. 2020. V. 8 (9). P. 331. https://doi.org/10.3390/biomedicines8090331.
89. The pharmacology of psilocybin. T. Passie, J. Seifert, U. Schneider, H. M. Emrich. Addict. Biol. 2002. V. (4). P. 357–364. https://doi.org/10.1080/1355621021000005937.
90. Psilocybin induces schizophrenia-like psychosis in humans via serotonin-2 agonist action.
F. X. Vollenweider, M. F. I. Vollenweider-Scherpenhuysen, A. Bäbler et al. Neuroreport. 1998. V. 9 (17). P. 3897–902. https://doi.org/10.1097/00001756-199812010-00024.
91. 5-HAT modulation of dopamine release in basal ganglia in psilocybin-induced psychosis in man – a PET study with [11C]raclopride. F. X. Vollenweider, P. Vontobel, D. Hell, K. L. Leenders. Neuropsychopharmacology. 1999. V. 20 (5). P. 424–433. https://doi.org/10.1016/S0893-133X(98)00108-0.
92. The effect of combined treatment of psilocybin and eugenol on lipopolysaccharide-induced brain inflammation in mice. T. Zanikov, M. Gerasymchuk, G. E. Ghasemi et al. Molecules. 2023. 28 (6). P. 2624. https://doi.org/10.3390/molecules28062624.
93. Neylan T. C., O’Donovan A. Inflammation and PTSD. PTSD Research Quarterly. 2019. V. 29 (4). P. 1–10. ISSN: 1050-1835. URL: https://www.ptsd.va.gov/publications/rq_docs/V29N4.pdf.
94. Psilocybin therapy for clinicians with symptoms of depression from frontline care during the COVID-19 pandemic: a randomized clinical trial. A. L. Back, T. K. Freeman-Young, L. Morgan et al. JAMA Netw. Open. 2024. V. 7 (12). P. e2449026. https://doi.org/10.1001/jamanetworkopen.2024.49026.95. Compass pathways announces durable improvement in symptoms through 12 weeks in open-label phase 2 study of COMP360 psilocybin in post-traumatic stress disorder. Compass News. May 8, 2024. Accessed May 9, 2024. URL: https://compasspathways.com/compass-pathways-announces-durable-improvement-in-symptoms-through-12-weeks-in-open-label-phase-2-study-of-comp360-psilocybin-in-post-traumatic-stress-disorder/
96. Duerr H. A. Phase 2 Study of COMP360 psilocybin finds improved PTSD symptoms. URL: https://www.psychiatrictimes.com/view/phase2-study-of-comp360-psilocybin-finds-improved-ptsd-symptoms.
97. Study Protocol of an open-label proof-of-concept trial examining the safety and clinical efficacy of psilocybin-assisted therapy for veterans with PTSD. A. K. Davis, A. W. Levin, P. B. Nagib et al. BMJ Open. 2023. V. 13 (5). P. e068884. https://doi.org/10.1136/bmjopen-2022-068884.
98. MDMA-assisted therapy for severe PTSD: a randomized, double-blind, placebo-controlled phase 3 study. J. M. Mitchell, M. Bogenschutz, A. Lilienstein et al. Nat. Med. 2021. V. 27 (6). P. 1025–1033. https://doi.org/10.1038/s41591-021-01336-3. Epub 2021 May 10.
99. MDMA increases glutamate release and reduces parvalbumin-positive gabaergic cells in the dorsal hippocampus of the rat: role of cyclooxygenase. J. H. Anneken, J. I. Cunningham, S. A. Collins et al. J. Neuroimmune Pharmacol. 2012. V. 8. P. 58–65. https://doi.org/10.1007/s11481-012-9420-x.
100. Електронний ресурс. URL: https://www.biospace.com/drug-development/fda-rejects-lykos-mdma-assisted-ptsd-therapy-after-negative-adcomm