Low-dose digoxin and its combination with sodium valproate: central, analgesic, and antihypoxic effects
pdf (Українська)

Keywords

digoxin
valproate
combination
central effects
analgesia
hypoxia

Abstract

The cardiac glycoside digoxin, at a sub-cardiotonic dose, has been proven to be an effective adjuvant to classical antiepileptic drugs (AEDs) in controlling seizures that are poorly responsive to conventional pharmacotherapy. However, the accompanying pharmacological properties of low-dose digoxin remain unclear, particularly its central effects, as well as its influence on pain and hypoxia sensitivity – both per se and in combination with the widely used AED sodium valproate.

The aim of thе study was to investigate the central, analgesic, and antihypoxic properties of low-dose digoxin and its combination with sodium valproate. Experiments were conducted on 162 albino mice. Central effects were assessed using the light/dark box test, the rotarod test, and the horizontal bar test. Analgesic potential was evaluated with the hot plate test. Antihypoxic properties were studied in models of normobaric hypoxic hypoxia with hypercapnia (closed-space hypoxia) and hemic hypoxia. Sodium valproate was administered intragastrically at 150 mg/kg (1/2 ED50) 30 minutes prior to testing; digoxin was administered subcutaneously at a previously established effective anticonvulsant dose of 0.8 mg/kg (1/10 LD50) 15–20 minutes before experiments. It was found that neither digoxin per se, nor its combination with valproate produced adverse effects on muscle tone or motor coordination in the rotarod and horizontal bar tests. The absence of muscle relaxant activity in these tests may be considered a marker of the neuro-safety of digoxin and its combination with valproate, since impaired skeletal muscle tone and motor coordination are regarded as leading indicators of neurotoxicity. Furthermore, the tested drugs – both individually and in combination – exhibited no significant effects on anxiety or behavioral responses in the light/dark box test. In the hot plate test, digoxin demonstrated distinct analgesic properties, and its co-administration with valproate did not abolish the analgesic potential of the cardiac glycoside. Digoxin and its combination with valproate also displayed pronounced antihypoxic properties under conditions of normobaric hypoxic hypoxia with hypercapnia, but not under hemic hypoxia. The results obtained provide experimental justification for the safety of combining low-dose digoxin with sodium valproate in terms of central effects, which may be beneficial in the treatment of refractory epilepsy.

https://doi.org/10.33250/19.04.342
pdf (Українська)

References

1. Результати клініко-економічного аналізу фармакотерапії хворих на епілепсію. Н. В. Олєйнікова та ін. Фармацевтичний журнал. 2022. Т. 77, № 3. С. 33–43.
2. Elkommos S., Mula M. Current and future pharmacotherapy options for drug-resistant epilepsy. Expert Opinion on Pharmacotherapy. 2022. V. 23. P. 2023–2034.
3. Drug resistance in epilepsy. E. Perucca et al. Lancet Neurology. 2023. V. 22. P. 723–734.
4. Цивунін В. В. Вивчення впливу дарбуфелону на антиконвульсивний потенціал класичних протиепілептичних засобів. Фармацевтичний журнал. 2024. Т. 79, № 6. С. 73–83.
5. Цивунін В. В. Вплив монтелукасту на антиконвульсивний потенціал класичних протиепілептичних засобів: експериментальне дослідження. Фармакологія та лікарська токсикологія. 2025. Т. 19, № 2. С. 172–179.
6. Tsyvunin V., Shtrygol' S., Shtrygol' D. Digoxin enhances the effect of antiepileptic drugs with different mechanism of action in the pentylenetetrazole-induced seizures in mice. Epilepsy Research. 2020. V. 167. Art. 106465.
7. Digoxin potentiates the anticonvulsant effect of carbamazepine and lamotrigine against experimental seizures in mice. V. Tsyvunin et al. The Thai Journal of Pharmaceutical Sciences. 2021. V. 45, No. 3. P. 165–171
8. Digoxin at sub-cardiotonic dose modulates the anticonvulsive potential of valproate, levetiracetam and topiramate in experimental primary generalized seizures. V. Tsyvunin et al. Ceska a Slovenska
Farmacie: Casopis Ceske Farmaceuticke Spolecnosti a Slovenske Farmaceuticke Spolecnosti. 2022. V. 71, No. 2. P. 78–88.
9. Державний формуляр лікарських засобів. Шістнадцятий випуск [Електронний ресурс]. Наказ МОЗ України від 12.03.2024 № 418. Київ, 2024. 1235 с. URL: https://moz.gov.ua/uploads/10/54241-dn_418_12032024_dod.pdf.
10. Vajda F. J., Eadie M. J. The clinical pharmacology of traditional antiepileptic drugs. Epileptic Disord. 2014. V. 16, No. 4. P. 395–408.
11. Elucidating the potential side effects of current anti-seizure drugs for epilepsy. E. Akyüz et al. Current neuropharmacology. 2021. V. 19, No. 11. P. 1865–1883.
12. Adverse events related to antiepileptic drugs. Y. L. Dang et al. Epilepsy & Behavior. 2021. V. 115. Art. 107657.
13. Repurposing of digoxin in pain and inflammation: an evidence‐based study. S. Patel et al. Drug Development Research. 2022. V. 83, No. 5. P. 1097–1110.
14. Castellanos J., Eblen-Zajjur A. Digoxine reduces thermal pain threshold and neuromuscular coordination in rats. Archivos Venezolanos de Farmacología y Terapéutica. 2013. V. 32, No. 1. P. 16–19.
15. Xu Y. H., Fan Q. L. Relationship between chronic hypoxia and seizure susceptibility. CNS neuroscience & therapeutics. 2022. V. 28, No. 11. P. 1689–1705.
16. Ma Y., Wu Q. Intermittent hypoxia: linkage between OSAS and epilepsy. Frontiers in Pharmacology. 2023. V. 14. Art. 1230313.
17. Shan H. M., Maurer M. A., Schwab M. E. Four-parameter analysis in modified Rotarod test for detecting minor motor deficits in mice. BMC biology. 2023. V. 21, No. 1. Art. 177.
18. Deacon R. M. Measuring motor coordination in mice. Journal of Visualized Experiments. 2013. V. 75. Art. e2609.
19. Exploring the light/dark box test: protocols and implications for neuroscience research. R. Campos-Cardoso et al. Journal of Neuroscience Methods. 2023. V. 384. Art. 109748.
20. Ядловський О. Є., Суворова З. С., Науменко М. В. Особливості застосування методу «Гаряча пластина» у фармакологічних дослідженнях. Фармакологія та лікарська токсикологія. 2020. Т. 14, № 3. C. 177–184.
21. Доклінічні дослідження лікарських засобів: метод. рек.; за ред. чл.-кор. АМН України О. В. Стефанова. Київ : ВД «Авіцена», 2001. 528 с.
22. Подольський І. М. Експериментальне обґрунтування застосування 3-N-R,R′-амінометилзаміщених похідних хінолін-4-онів як психотропних засобів: дис. на здобуття наук. ступеня доктора фармац. наук. Нац. фармац. ун-т МОЗ України. Харків, 2021. 484 с.
23. Drug discovery and evaluation: pharmacological assays; ed. H. G. Vogel. Berlin ; Heidelberg ; New York : Springer, 2008. 2071 p.
24. Shen H. C., Hammock B. D. Discovery of inhibitors of soluble epoxide hydrolase: a target with multiple potential therapeutic indications. Journal of medicinal chemistry. 2012. V. 55, No. 5. P. 1789–1808.
25. Shan J., Hashimoto K. Soluble epoxide hydrolase as a therapeutic target for neuropsychiatric disorders. International journal of molecular sciences. 2022. V. 23, No. 9. Art. 4951.
26. Kuo Y. M., Lee Y. H. Epoxyeicosatrienoic acids and soluble epoxide hydrolase in physiology and diseases of the central nervous system. Journal of Physiological Investigation. 2022. V. 65, No. 1. P. 1–11.
27. Effect of ouabain on calcium signaling in rodent brain: а systematic review of in vitro studies. J. A. Leite et al. Frontiers in pharmacology. 2022. V. 13. Art. 916312.
28. Cardiac glycosides provide neuroprotection against ischemic stroke: discovery by a brain slice-based compound screening platform. J. K. T. Wang et al. Proceedings of the National Academy of Sciences. 2006. V. 103, No. 27. P. 10461–10466.
29. Digoxin and other cardiac glycosides inhibit HIF-1α synthesis and block tumor growth. H. Zhang et al. Proceedings of the National Academy of Sciences. 2008. V. 105, No. 50. P. 19579–19586.