Вплив антикоагулянтів непрямої дії на процеси метастазування
pdf

Ключові слова

метастазування
антикоагулянти непрямої дії
похідні кумарину

Анотація

В огляді розглянуто антиметастатичні ефекти антикоагулянтів непрямої дії, зокрема варфарину, аценокумаролу, фенпрокумону, наведено основні механізми цих ефектів. Окремо проаналізовано доклінічне вивчення нових похідних кумарину з антиметастатичною активністю. Багато уваги приділено клінічним дослідженням щодо протипухлинної й антиметастатичної активності вищеперерахованих антикоагулянтів.

Мета дослідження – аналіз та узагальнення даних літератури щодо антиметастатичної активності антикоагулянтів непрямої дії (групи кумарину).

На моделях метастазуючих пухлин у тварин препарати групи кумарину антикоагулянтів непрямої дії зменшують ріст і метастазування первинної пухлини та збільшують тривалість життя. Клінічні дослідження щодо застосування антикоагулянтів непрямої дії в онкохворих, зокрема й заметастазування, виявились недостатньо переконливими.

Щодо механізмів антиметастатичної активності антикоагулянтів непрямої дії групи кумаринів, то найсуттєвішими ми вважаємо гальмування ангіогенезу, модуляцію шляху PI3K/AKT/mTOR, інгібування карбоангідраз і пригнічення диференціації пухлино-асоційованих макрофагів (TAMs) у мікрооточенні пухлини.

Крім того, як протипухлинні та антиметастатичні засоби заслуговують на увагу похідні сульфаніламідів кумарину та похідні бензилсульфону кумарину, а також деякі природні кумарини. Одним із перспективних напрямів досліджень є конструювання гібридів, в яких кумарин використовується як каркас для інших біологічно активних речовин.

https://doi.org/10.33250/19.04.318
pdf

Посилання

1. McCulloch P., George W. D. Warfarin inhibition of metastasis: the role of anticoagulation. Br. J. Surg. 1987. V. 74, No. 10. P. 879–883.
2. Пуськов О. М., Мунько М. А., Карацуба Т. А. Вплив антикоагулянтів прямої дії на процеси метастазування. Фармакологія та лікарська токсикологія. 2024. Т. 18, № 1. С. 43–52.
3. Hejna M., Raderer M., Zielinski C. C. Inhibition of metastases by anticoagulants. J. Natl. Cancer Inst. 1999. V. 91, No. 1. P. 22–36.
4. Vitamin K-dependent procoagulant in cancer cells: a potential target for the antimetastatic effect of warfarin? M. B. Donati, M. C. Roncaglioni, A. Falanga et al. Haemostasis. 1986. V. 16, No. 3–4. P. 288–294.
5. Correlation of the in vivo anticoagulant, antithrombotic, and antimetastatic efficacy of warfarin in the rat. G. F. Smith, B. L. Neubauer, J. L. Sundboom et al. Thromb. Res. 1988. V. 50, No. 1. P. 163–174.
6. Bobek V., Kovařík J. Antitumor and antimetastatic effect of warfarin and heparins. Biomed. Pharmacother. 2004. V. 58, No. 4. P. 213–219.
7. Han H. J., Hyun C. G. Acenocoumarol exerts anti-inflammatory activity via the suppression of NF-κB and MAPK pathways in RAW 264.7 cells. Molecules. 2023. V. 28, No. 5. P. 2075.
8. Venugopala K. N., Rashmi V., Odhav B. Review on natural coumarin lead compounds for their pharmacological activity. Biomed. Res. Int. 2013. V. 2013, No. 1. P. 963248.
9. Marine biological macromolecules and chemically modified macromolecules; potential anticoagulants. P. Chandika, P. Tennakoon, T. H. Kim et al. Mar. Drugs. 2022. V. 20, No. 10. P. 654.
10. Rational approaches, design strategies, structure activity relationship and mechanistic insights for therapeutic coumarin hybrids. H. Singh, J. V. Singh, K. Bhagat et al. Bioorg. Med. Chem. 2019. V. 27, No. 16. P. 3477–3510.
11. Synthesis and investigation of anti-inflammatory and anticonvulsant activities of novel coumarin-diacylated hydrazide derivatives. O. Tapanyiğit, O. Demirkol, E. Güler et al. Arab. J. Chem. 2020. V. 13, No. 12. P. 9105–9117.
12. Li H., Yao Y., Li L. Coumarins as potential antidiabetic agents. J. Pharm. Pharmacol. 2017. V. 69, No. 10. P. 1253–1264.
13. Plant coumarins with anti-HIV activity: isolation and mechanisms of action. A. D. Sharapov, R. F. Fatykhov, I. A. Khalymbadzha et al. Int. J. Mol. Sci. 2023. V. 24, No. 3. P. 2839.
14. Therapeutic potential of coumarins as antiviral agents. M. Z. Hassan, H. Osman, M. A. Ali, M. J. Ahsan. Eur. J. Med. Chem. 2016. V. 123. P. 236–255.
15. Tsivileva O. M., Koftin O. V., Evseeva N. V. Coumarins as fungal metabolites with potential medicinal properties. Antibiotics. 2022. V. 11, No. 9. P. 1156.
16. Inclusion of a 5-fluorouracil moiety in nitrogenous bases derivatives as human carbonic anhydrase IX and XII inhibitors produced a targeted action against MDA-MB-231 and T47D breast cancer cells. A. Petreni, A. Bonardi, C. Lomelino et al. Eur. J. Med. Chem. 2020. V. 190. P. 112.
17. VEGFR-2 inhibiting effect and molecular modeling of newly synthesized coumarin derivatives as anti- breast cancer agents. E. Y. Ahmed, N. A. A. Latif, M. F. El-Mansy et al. Bioorg. Med. Chem. 2020. V. 28, No. 5. P. 115328.
18. Musa M. A., Cooperwood J. S., Khan M. O. F. A review of coumarin derivatives in pharmacotherapy of breast cancer. Curr. Med. Chem. 2008. V. 15, No. 26. P. 2664–2679.
19. Khursheed A., Jain V. Medicinal research progress of natural coumarin and its derivatives. The Natural Products Journal. 2021. V. 11, No. 5. P. 648–662.
20. Discovering the structure–activity relationships of different O-prenylated coumarin derivatives as effective anticancer agents in human cervical cancer cells. E. H. Maleki, A. R. Bahrami, H. Sadeghian, M. M. Matin. Toxicol. In Vitro. 2020. V. 63. P. 104745.
21. Coumarins and gastrointestinal cancer: a new therapeutic option? Z. Banikazemi, S. M. Mirazimi, F. Dashti et al. Front. Oncol. 2021. V. 11. P. 752784.
22. Warfarin and vitamin K epoxide reductase: a molecular accounting for observed inhibition. S. Wu, X. Chen, D. Y. Jin et al. Blood. 2018. V. 132, No. 6. P. 647–657.
23. Horton J. D., Bushwick B. M. Warfarin therapy: evolving strategies in anticoagulation. Am. Fam. Physician. 1999. V. 59, No. 3. P. 635–646.
24. Решетняк Т. М. Варфарин в терапии антифосфолипидного синдрома. Современная ревматология. 2008. № 2. С. 20–31.
25. Brown J. M. A study of the mechanism by which anticoagulation with warfarin inhibits blood-borne metastases. Cancer Res. 1973. V. 33, No. 6. P. 1217–1224.
26. Frischkorn R., Rath W., Doench K. The influencing of rat-tail tumors with and without irradiation. Strahlentherapie. 1976. V. 151, No. 3. P. 214–221.
27. Rationale and experimental design for the VA cooperative study of anticoagulation (warfarin) in the treatment of cancer. L. R. Zacharski, W. G. Henderson, F. R. Rickles et al. Cancer. 1979. V. 44, No. 2. P. 732–741.
28. Williamson R. C., Lyndon P. J., Tudway A. J. Effects of anticoagulation and ileal resection on the development and spread of experimental intestinal carcinomas. Br. J. Cancer. 1980. V. 42, No. 1. P. 85–94.
29. Maat B. Selective macrophage inhibition abolishes warfarin-induced reduction of metastasis. Br. J. Cancer. 1980. V. 41, No. 2. P. 313.
30. Mousa S. A. Anticoagulants in thrombosis and cancer: the missing link. Semin. Thromb. Hemost. 2002. V. 28, No. 1. P. 45–52.
31. Anticoagulant activity of the enantiomers of acenocoumarol. T. Meinertz, W. Kasper, C. Kahl et al. Br. J. Clin. Pharmacol. 1978. V. 5, No. 2. P. 187–188.
32. Thijssen H. H., Baars L. G., Drittij-Reijnders M. J. Stereoselective aspects in the pharmacokinetics and pharmacodynamics of acenocoumarol and its amino and acetamido derivatives in the rat. Drug Metab. Dispos. 1985. V. 13, No. 5. P. 593–597.
33. The influence of Yoshida sarcoma, ε-aminocaproic acid and sintrom on the blood clotting system in rats. M. Kotschy, M. Grzebieluch, J. Szacki, M. Lawiński. Arch. Immunol. Ther. Exp. (Warsz.). 1971. V. 19, No. 4. P. 515–522.
34. The influence of prolonged administration of ε-aminocaproic acid and sintrom on metastases of Yoshida sarcoma to the lungs in rats. M. Lawiński, J. Szacki, M. Grzebieluch, M. Kotschy. Arch. Immunol. Ther. Exp. (Warsz.). 1971. V. 19, No. 4. P. 523–532.
35. Szacki J., Lawiński M., Grzebieluch M. Survival and frequency of pulmonary metastases in rats with implanted and removed primary Yoshida sarcoma after treatment with E-aminocaproic acid and sintrom. Arch. Immunol. Ther. Exp. (Warsz.). 1973. V. 21, No. 5. P. 763–766.
36. Галстян Г. М. Нарушения гемостаза, обусловленные дефицитом витамин К-зависимых факторов свертывания крови – патогенез, способы коррекции и рекомендации по лечению. Гематология и трансфузиология. 2012. Т. 57, № 2. С. 7–21.
37. Hagmar B., Boeryd B. Effect of heparin, epsilon-aminocaproic acid and protamine on spontaneous metastasis formation from resectable tail-tumours. Pathol. Eur. 1968. V. 3, No. 4. P. 509–520.
38. Oral anticoagulation in the treatment of a spontaneously metastasising murine tumour (3LL). P. Hilgard, H. Schulte, G. Wetzig et al. Br. J. Cancer. 1977. V. 35, No. 1. P. 78–85.
39. Hilgard P., Maat B. Mechanism of lung tumour colony reduction caused by coumarin anticoagulation. Eur. J. Cancer. 1979. V. 15, No. 2. P. 183–187.
40. A synthetic coumarin derivative (4-flourophenylacetamide-acetyl coumarin) impedes cell cycle at G0/G1 stage, induces apoptosis, and inhibits metastasis via ROS-mediated p53 and AKT signaling pathways in A549 cells. S. Umar, R. Soni, S. D. Durgapal et al. J. Biochem. Mol. Toxicol. 2020. V. 34, No. 10. P. e22553.
41. Potential antiproliferative effect of isoxazolo- and thiazolo coumarin derivatives on breast cancer mediated bone and lung metastases. L. Ballazhi, E. Popovski, A. Jashari et al. Acta Pharm. 2015. V. 65, No. 1. P. 53–63.
42. Coumarin sulfonamides derivatives as potent and selective COX-2 inhibitors with efficacy in suppressing cancer proliferation and metastasis. X. Y. Lu, Z. C. Wang, S. Z. Ren et al. Bioorg. Med. Chem. Lett. 2016. V. 26, No. 15. P. 3491–3498.
43. Design, synthesis and preliminary biological evaluation of benzylsulfone coumarin derivatives as anti- cancer agents. T. Wang, T. Peng, X. Wen et al. Molecules. 2019. V. 24, No. 22. P. 4034.
44. Natural coumarins: exploring the pharmacological complexity and underlying molecular mechanisms. J. Sharifi-Rad, N. Cruz-Martins, P. López-Jornet et al. Oxid. Med. Cell. Longev. 2021. V. 2021, No. 1. P. 6492346.
45. Coumarin: a natural, privileged and versatile scaffold for bioactive compounds. A. Stefanachi, F. Leonetti, L. Pisani et al. Molecules. 2018. V. 23, No. 2. P. 250.
46. Apoptosis in leukemic cells induced by anti-proliferative coumarin isolated from the stem bark of Fraxinus rhynchophylla. B. Z. Lee, I. S. Lee, C. H. Pham et al. J. Microbiol. Biotechnol. 2020. V. 30, No. 8. P. 1214–1221.
47. Antitumor effects of esculetin, a natural coumarin derivative, against canine mammary gland tumor cells by inducing cell cycle arrest and apoptosis. J. Choi, M. J. Yoo, S. Y. Park, J. W. Seol. Vet. Sci. 2023. V. 10, No. 2. P. 84.
48. Kimura Y., Sumiyoshi M. Antitumor and antimetastatic actions of dihydroxycoumarins (esculetin or fraxetin) through the inhibition of M2 macrophage differentiation in tumor-associated macrophages and/or G1 arrest in tumor cells. Eur. J. Pharmacol. 2015. V. 746. P. 115–125.
49. Zeki N. M., Mustafa Y. F. 6, 7-Coumarin-heterocyclic hybrids: a comprehensive review of their natural sources, synthetic approaches, and bioactivity. J. Mol. Struct. 2024. P. 137601.
50. Prateeptongkum S., Mahavorasirikul W., Duangdee N. Synthesis and anti-proliferative activity of novel oxepin-annulated coumarins. Arkivoc. 2018. V. 2018, No. 7. P. 73–85.
51. Шилова А. Н. Методы медикаментозной профилактики и лечения тромбозов у онкологических больных, их влияние на рост и метастазирование опухолей, на выживаемость больных (обзор литературы). Сибирский онкологический журнал. 2012. № 2. С. 79–83.
52. Моисеев С. В. Венозные тромбозы и злокачественные опухоли. Клиническая фармакология и терапия. 2005. Т. 14, № 3. С. 27–32.
53. Антитромботическая терапия в онкологии: современное состояние проблемы и нерешенные вопросы. А. П. Трашков, А. Г. Васильев, Н. В. Цыган и др. Педиатр. 2012. Т. 3, № 2. С. 3–19.
54. Schulman S., Lindmarker P. Incidence of cancer after prophylaxis with warfarin against recurrent venous thromboembolism. N. Engl. J. Med. 2000. V. 342, No. 26. P. 1953–1958.
55. Effect of warfarin on survival in small cell carcinoma of the lung: Veterans Administration Study No. 75. L. R. Zacharski, W. G. Henderson, F. R. Rickles et al. Jama. 1981. V. 245, No. 8. P. 831–835.
56. Daly L. The first international urokinase/warfarin trial in colorectal cancer. Clin. Exp. Metastasis. 1991. V. 9, No. 1. P. 3–11.
57. Double-blind randomised trial of very-low-dose warfarin for prevention of thromboembolism in stage IV breast cancer. M. Levine, J. Hirsh, M. Gent et al. Lancet. 1994. V. 343, No. 8902. P. 886–889.
58. Randomized comparison of low molecular weight heparin and coumarin derivatives on the survival of patients with cancer and venous thromboembolism. A. Y. Y. Lee, F. R. Rickles, J. A. Julian et al. J. Clin. Oncol. 2005. V. 23, No. 10. P. 2123–2129.
59. Overall survival with warfarin vs. low-molecular-weight heparin in cancer-associated thrombosis. T. Chiasakul, R. Redd, R. Patell et al. J. Thromb. Haemost. 2021. V. 19, No. 11. P. 2825–2834.
60. Antiangiogenic effects of coumarins against cancer: from chemistry to medicine. M. B. Majnooni, S. Fakhri, A. Smeriglio et al. Molecules. 2019. V. 24, No. 23. P. 4278.
61. Synthesis and tumor inhibitory activity of novel coumarin analogs targeting angiogenesis and
apoptosis. B. R. V. Avin, P. Thirusangu, V. L. Ranganatha et al. Eur. J. Med. Chem. 2014. V. 75. P. 211–221.
62. Thakur A., Singla R., Jaitak V. Coumarins as anticancer agents: a review on synthetic strategies, mechanism of action and SAR studies. Eur. J. Med. Chem. 2015. V. 101. P. 476–495.
63. Triphenylethylene-coumarin hybrid TCH-5c suppresses tumorigenic progression in breast cancer mainly through the inhibition of angiogenesis. N. Cui, D. D. Lin, Y. Shen et al. Anticancer Agents Med. Chem. 2019. V. 19, No. 10. P. 1253–1261.
64. Yu J. S. L., Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development. 2016. V. 143, No. 17. P. 3050–3060.
65. Wee P., Wang Z. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers. 2017. V. 9, No. 5. P. 52.
66. Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial–mesenchymal transition. H. Y. Irie, R. V. Pearline, D. Grueneberg et al. J. Cell Biol. 2005. V. 171, No. 6. P. 1023–1034.
67. Overexpression of AKT2/protein kinase Bβ leads to up-regulation of β1 integrins, increased invasion, and metastasis of human breast and ovarian cancer cells. M. J. Arboleda, J. F. Lyons, F. F. Kabbinavar et al. Cancer Res. 2003. V. 63, No. 1. P. 196–206.
68. Activation of Akt-1 (PKB-α) can accelerate ErbB-2-mediated mammary tumorigenesis but suppresses tumor invasion. J. N. Hutchinson, J. Jin, R. D. Cardiff et al. Cancer Res. 2004. V. 64, No. 9. P. 3171–3178.
69. Jakubowski M., Szahidewicz-Krupska E., Doroszko A. The human carbonic anhydrase II in platelets: an underestimated field of its activity. Biomed. Res. Int. 2018. V. 2018, No. 1. P. 4548353.
70. Neri D., Supuran C. T. Interfering with pH regulation in tumours as a therapeutic strategy. Nat. Rev. Drug Discov. 2011. V. 10, No. 10. P. 767–777.
71. Supuran C. T. Carbonic anhydrase inhibition and the management of hypoxic tumors. Metabolites. 2017. V. 7, No. 3. P. 48.
72. Daunys S., Petrikaitė V. The roles of carbonic anhydrases IX and XII in cancer cell adhesion, migration, invasion and metastasis. Biol. Cell. 2020. V. 112, No. 12. P. 383–397.
73. Vu H., Pham N. B., Quinn R. J. Direct screening of natural product extracts using mass spectrometry. J. Biomol. Screen. 2008. V. 13, No. 4. P. 265–275.
74. Coumarins effectively inhibit bacterial α-carbonic anhydrases. S. Giovannuzzi, C. S. Hewitt, A. Nocentini et al. J. Enzyme Inhib. Med. Chem. 2022. V. 37, No. 1. P. 333–338.
75. Lin Y., Xu J., Lan H. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J. Hematol. Oncol. 2019. V. 12, No. 1. P. 76.
76. The role of tumor associated macrophages (TAMs) in cancer progression, chemoresistance, angiogenesis and metastasis - current status. S. Dallavalasa, N. M. Beeraka, C. G. Basavaraju et al. Curr. Med. Chem. 2021. V. 28, No. 39. P. 8203–8236.
77. Ruffell B., Coussens L. M. Macrophages and therapeutic resistance in cancer. Cancer Cell. 2015. V. 27, No. 4. P. 462.
78. Grigore A. Targeting tumor-associated macrophages by plant compounds. A. Grigore. Macrophages. Eds. by H. Prakash. London : IntechOpen, 2020. Ch. 2.
79. Coumarin-based fluorescent inhibitors for photocontrollable bioactivation. F. Ren, W. Zhu, S. Yang et
al. Mol. Pharm. 2023. V. 20, No. 6. P. 3223–3233.