Evaluation of toxicological properties of nitric oxide liposomal form
pdf (Українська)

Keywords

liposomal form of nitric oxide
acute toxicity
repeated dose toxicity
rats
clinical and laboratory studies

Abstract

Numerous pathological processes, such as hypertension, atherosclerosis, impaired blood flow in the central nervous system, and inability to vascular remodeling, are caused by a deficiency of endogenous synthesis / release of nitric oxide (NO). In such cases, additional administration of NO can be a very effective strategy in the treatment of diseases associated with the mentioned pathological processes. The experimental pharmaceutical agent "Liposomal form of nitric oxide, lyophilisate for emulsion preparation" (Lip (NO)) was developed for preclinical studies of its specific activity and safety. The comprehensive study of toxicological parameters of new potential drugs is an important stage in their preclinical evaluation. The purpose of the study is to conduct an experimental assessment of the new pharmacological agent Lip (NO) toxicological properties to substantiate its safety when used in clinical practice. Acute toxicity studies were conducted on white non-linear rats of both sexes weighing 160–180 g. A single intraperitoneal injection of Lip (NO) to white rats of both sexes in the maximum permissible volume (5.0 ml per 1 rat) and 90 mg/kg (in terms of phosphatidylcholine) did not cause animal death, clinical signs of toxicity, decrease in body weight, pathological changes in internal organs and the brain, signs of hemo-circulatory disorders and inflammation at the end of the observation period (14 days) compared to the control group. Under conditions of repeated intraperitoneal administration of Lip (NO) to rats of both sexes for 14 consecutive days at a therapeutic dose and a dose exceeding the therapeutic one by fivefold, no mortality or significant deviations in general condition or body weight were observed in any of the experimental groups. No adverse effects were found on hematological parameters of peripheral blood, major metabolic pathways, or the structural and functional characteristics of the liver and kidneys beyond physiological limits. However, administration of the test sample at both doses resulted in an average increase in creatinine levels by 26% (females) and 40% (males) compared to controls, and an average increase in LDL by 35.5% following administration of the fivefold therapeutic dose. Under these conditions, no macro- or microscopic alterations were observed in the main integral indicators, hemodynamic parameters, or signs of inflammatory or dystrophic damage to internal organs and tissues. Thus, the results obtained indicate the feasibility and promise of further research the pharmacological properties and therapeutic efficacy of the Lip (NO).

https://doi.org/10.33250/19.04.377
pdf (Українська)

References

1. Vanhoutte P. M. Endothelium and control of vascular function. Hypertension. 1989. V.13. P. 658–667.
2. Tibballs J. The role of nitric oxide (formerly endothelium-derived relaxing factor-EDRF) in vasodilatation and vasodilator therapy. Anaesth. Intensive Care. 1993. V. 21, No. 6. P. 759–773.
3. Garthwaite J. Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci. 1991. V. 14. P. 60–67.
4. Mollace V., Bagetta G., Nistico G. Evidence that L-arginine possesses proconvulsant effects mediated through nitric oxide. Neuroreport. 1991. V. 2. P. 269–272.
5. Bath P. M., Krishnan R., Appleton J. P. Nitric oxide donors (nitrates), L‐arginine, or nitric oxide synthase inhibitors for acute stroke. Cochrane Database of Systematic Reviews. 2017. V. 4 (4). P. CD000398. https://doi.org/ 10.1002/14651858.CD000398.pub2.
6. Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolaemic patients by L-arginine. H. Drexler, A. M. Zeiher, K. Meinzer, H. Just. Lancet. 1991. V. 338. P. 1546–1550.
7. Myocardial reoxygenation injury after ischaemia is mediated by the L-arginine: nitric oxide pathway. G. D. Buckberg, G. Matheis, M. P. Sherman et al. In: S. Moncada, M. A. Marletta, J. B. Jr. Hibbs, E. A. Higgs, eds. The biology of nitric oxide. V. 1. London : Portland Press, 1992. P. 52–54.
8. Мойбенко А. А., Павлюченко В. Б., Даценко В. В. Роль оксида азота в регуляторной саморегуляции кровообращения. Досягнення біології та медицини. 2003. T. 1, № 1. С. 72–79.
9. Effects of inhibition of the L-arginine/nitric oxide pathway in the rat lower urinary tract in vivo and in vitro. K. Persson, Y. Igawa, A. Mattiasson, K. E. Andersson. Br. J. Pharmacol. 1992. V. 107. P. 178–184.
10. Mearin F., Mourelle M., Guarner F. Patients with achalasia lack nitric oxide synthase in the gastrooesophageal function. Eur. J. Clin. Invest. 1993. V. 23. P. 724–728.
11. Elnaggar M. A. Lipid-based carriers for controlled delivery of nitric oxide. M. A. Elnaggar, R. Subbiah, D. K. Han, Y. K. Joung. Expert Opinion on Drug Delivery. 2017. V. 14, No. 12. P. 1341–1353.
12. Miller M. R., Megson I. L. Recent developments in nitric oxide donor drugs. Br. J. Pharmacol. 2007, V. 151. P. 305–321.
13. Cytochrome c oxidase and nitric oxide in action: molecular mechanisms and pathophysiological implications. P. Sarti, E. Forte, D. Mastronicola et al. Biochim. Biophys. Acta. 2012. V. 1817. P. 610–619.
14. Griffiths M. J., Evans T. W. Inhaled nitric oxide therapy in adults. Engl. J. Med. 2005. V. 353. P. 2683–2695.
15. Nitric oxide-releasing polymeric materials for antimicrobial applications: a review. F. Rong, Y. Tang, T. Wang et al. Antioxidants (Basel). 2019. V. 8. P. 556.
16. Pieretti J. C., Seabra A. B. In: Nanotechnology in skin, soft tissue, and bone infections (Ed: M. Rai). Springer International Publishing, Cham, 2020. Chapter 1.
17. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery ensign. J. S. Suk, Q. Xu, N. Kim, J. Hanes. Adv. Drug Deliv. Rev. 2016. V. 99. P. 28–51.
18. Well-defined bifunctional dendrimer bearing 54 nitric oxide-releasing moieties and 54 ursodeoxycholic acid groups presenting high anti-inflammatory. A. M. Garzon-Porras, D. L. Bertuzzi, K. Lucas, C. Ornelas. Sci. Eng. 2022. V. 8. P. 5171–5187.
19. Designed fabrication of silica-based nanostructured particle systems for nanomedicine applications. Y. Piao, A. Burns, J. Kim et al. Adv. Funct. Mater. 2008. V. 18. P. 3745–3758.
20. Pissuwan D., Niidome T., Cortie M. B. The forthcoming applications of gold nanoparticles in drug and gene delivery systems. J. Controlled Release. 2011. V. 149. P. 65–71.
21. Bhowmick D., Mugesh G. Insights into the catalytic mechanism of synthetic glutathione peroxidase mimetics. Organic and Biomolecular Chemistry. 2015. V. 13. P. 10262–10272.
22. Nitric oxide producing coating mimicking endothelium function for multifunctional vascular stents. Z. Yang, Y. Yang, K. Xiong et al. Biomaterials. 2015. V. 63. P. 80–92.
23. Nitric oxide loaded echogenic liposomes for nitric oxide delivery and inhibition of intimal hyperplasia. S-L. Huang, P. H. Kee, H. Kim et al. Journal of the American College of Cardiology. 2009. V. 54, No. 7. P. 652–659.
24. A novel liposomal nanomedicine for nitric oxide delivery and breast cancer treatment. S. Y. Lee, Y. Rim, D. D. McPherson et al. Bio-Medical Materials and Engineering. 2014. V. 24, No. 1. P. 61–67.
25. Про затвердження порядку проведення доклінічного вивчення лікарських засобів та експертизи матеріалів доклінічного вивчення лікарських засобів: наказ МОЗ України від 14.12. 2009 № 944. Офіційний вісник України. 2010. № 4. С. 61. стаття 176.
26. Закон України № 3447-IV «Про захист тварин від жорстокого поводження». Відомості Верховної Ради України. Офіц. вид. 2006. № 27. С. 990, стаття 230. (Бібліотека офіційних видань).
27. European convention for the protection of vertebrate animals used for experimental and other scientific purposes. Strasbourg, 1986. ETS No. 123. URL: https://rm.coe.int/168007a67b.
28. Доклінічні дослідження лікарських засобів: методичні рекомендації; за ред. О. В. Стефанова. Київ : ВД «Авіцена», 2001. 528 с.
29. Giknis M. L. A., Clifford. C. B. Clinical laboratory parameters for Crl: WI (Han). Charles River Laboratories. 2008. URL: www.criver.com/SiteCellectiondocuments/].
30. Лабораторный справочник СИНЭВО; ред. О. В. Небыльцова. Киев : ООО «Доктор-Медиа», 2011. 420 с.
31. Проблема нормы в токсикологии (современные представления и методические подходы, основные параметры и константы). И. М. Трахтенберг, Р. Е. Сова, В. О. Шефтель, Ф. А. Оникиенко; ред. И. М. Трахтенберг. М. : Медицина, 1991. 208 с.